There is a 较新的版本 这个记录可用。

数据集 开放访问

BIP4Covid19:冠状病毒相关出版物的影响指标和指标

thanasis vergoulis.; Ilias Kanellos.; Serafeim Chatzopoulos.; 达娜埃普·卡里迪; Theodore Dalamagas.


杰森导出

{
  "files": [
    {
      "links": {
        "self": "//americinnmankato.com/api/files/3969c355-9ed0-4d4a-976a-e12be35ce86f/articles_by_influence.csv"
      }, 
      "checksum": "md5:81050ea58b89477f22e0f22896be44db", 
      "bucket": "3969c355-9ed0-4d4a-976a-e12be35ce86f", 
      "key": "articles_by_influence.csv", 
      "type": "csv", 
      "size": 14915432
    }, 
    {
      "links": {
        "self": "//americinnmankato.com/api/files/3969c355-9ed0-4d4a-976a-e12be35ce86f/articles_by_popularity.csv"
      }, 
      "checksum": "md5:3c0e4a9382a7419c08537498780929c3", 
      "bucket": "3969c355-9ed0-4d4a-976a-e12be35ce86f", 
      "key": "articles_by_popularity.csv", 
      "type": "csv", 
      "size": 14915432
    }, 
    {
      "links": {
        "self": "//americinnmankato.com/api/files/3969c355-9ed0-4d4a-976a-e12be35ce86f/articles_by_tweets.csv"
      }, 
      "checksum": "md5:7812f7d41090afbfdd6a0db9c1c40da1", 
      "bucket": "3969c355-9ed0-4d4a-976a-e12be35ce86f", 
      "key": "articles_by_tweets.csv", 
      "type": "csv", 
      "size": 14915432
    }
  ], 
  "owners": [
    42037
  ], 
  "doi": "10.5281 / zenodo.4307701", 
  "stats": {
    "version_unique_downloads": 10897.0, 
    "unique_views": 2629.0, 
    "views": 2735.0, 
    "version_views": 114116.0, 
    "unique_downloads": 179.0, 
    "version_unique_views": 106632.0, 
    "volume": 3296310472.0, 
    "version_downloads": 15142.0, 
    "downloads": 221.0, 
    "version_volume": 216882025761.0
  }, 
  "links": {
    "doi": "//doi.org/10.5281/zenodo.4307701", 
    "conceptdoi": "//doi.org/10.5281/zenodo.3723281", 
    "bucket": "//americinnmankato.com/api/files/3969c355-9ed0-4d4a-976a-e12be35ce86f", 
    "conceptbadge": "//americinnmankato.com/badge/doi/10.5281/zenodo.3723281.svg", 
    "html": "//americinnmankato.com/record/4307701", 
    "latest_html": "//americinnmankato.com/record/4903432", 
    "badge": "//americinnmankato.com/badge/doi/10.5281/zenodo.4307701.svg", 
    "latest": "//americinnmankato.com/api/records/4903432"
  }, 
  "conceptdoi": "10.5281 / ZENODO.3723281", 
  "created": "2020-12-05T11:17:34.099201+00:00", 
  "updated": "2021-06-05T15:42:59.071540+00:00", 
  "conceptrecid": "3723281", 
  "revision": 28, 
  "id": 4307701, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281 / zenodo.4307701", 
    "description": "<p>This dataset contains impact metrics and indicators for a set of publications that are related to the <a href=\"//en.wikipedia.org/wiki/Coronavirus_disease_2019\">COVID-19 infectious disease</a> and the coronavirus that causes it. It is based on:</p>\n\n<ol>\n\t<li>&Tau;he <a href=\"//pages.semanticscholar.org/coronavirus-research\">CORD-19 dataset</a> released by the team of <a href=\"//www.semanticscholar.org/\">Semantic Scholar</a><sup>1</sup> and</li>\n\t<li>&Tau;he curated data provided by the <a href=\"//www.ncbi.nlm.nih.gov/research/coronavirus/\">LitCovid hub</a><sup>2</sup>.</li>\n</ol>\n\n<p>These data have been cleaned and integrated with data from <a href=\"//github.com/echen102/COVID-19-TweetIDs\">COVID-19-TweetIDs</a> and from other sources (e.g., PMC). The result was dataset of&nbsp;216,508 unique articles along with relevant metadata (e.g., the underlying citation network). We utilized this dataset to produce, for each article, the values of the following impact measures:</p>\n\n<ul>\n\t<li><em><strong>Influence:</strong></em> Citation-based measure reflecting the total impact of an article. This is based on the PageRank<sup>3</sup> network analysis method. In the context of citation networks, it estimates the importance of each article based on its centrality in the whole network. This measure was calculated using the PaperRanking (<a href=\"//github.com/diwis/PaperRanking\">//github.com/diwis/PaperRanking</a>) library<sup>4</sup>.</li>\n\t<li><em><strong>Popularity:</strong></em> Citation-based measure reflecting the current impact of an article. This is based on the RAM<sup>5</sup> citation network analysis method. Methods like PageRank are biased against recently published articles (new articles need time to receive their first citations). RAM alleviates this problem using an approach known as &quot;time-awareness&quot;. This is why it is more suitable to capture the current &quot;hype&quot; of an article. This measure was calculated using the PaperRanking (<a href=\"//github.com/diwis/PaperRanking\">//github.com/diwis/PaperRanking</a>) library<sup>4</sup>.</li>\n\t<li><em><strong>Social Media Attention: </strong></em>The number of tweets related to this article. Relevant data were collected from the <a href=\"//github.com/echen102/COVID-19-TweetIDs\">COVID-19-TweetIDs</a> dataset. In this version, tweets between 1/11-6/11 have been considered from the previous dataset.&nbsp;</li>\n</ul>\n\n<p>We provide three CSV files, all containing the same information, however each having its entries ordered by a different impact measure. All CSV files are tab separated and have the same columns (PubMed_id, PMC_id, DOI, popularity_score, influence_score, tweets count).</p>\n\n<p>The work is based on the following publications:</p>\n\n<blockquote>\n<ol>\n\t<li>COVID-19 Open Research Dataset (CORD-19). 2020. Version 2020-11-28 Retrieved from //pages.semanticscholar.org/coronavirus-research. Accessed 2020-11-28. doi:10.5281/zenodo.3715506</li>\n\t<li>Chen Q, Allot A, &amp; Lu Z. (2020) Keep up with the latest coronavirus research, Nature 579:193 (version 2020-11-28)</li>\n\t<li>R. Motwani L. Page, S. Brin and T. Winograd. 1999. The PageRank Citation Ranking: Bringing Order to the Web. Technical Report. Stanford InfoLab.</li>\n\t<li>I. Kanellos, T. Vergoulis, D. Sacharidis, T. Dalamagas, Y. Vassiliou: Impact-Based Ranking of Scientific Publications: A Survey and Experimental Evaluation. TKDE 2019</li>\n\t<li>Rumi Ghosh, Tsung-Ting Kuo, Chun-Nan Hsu, Shou-De Lin, and Kristina Lerman. 2011. Time-Aware Ranking in Dynamic Citation Networks. In Data Mining Workshops (ICDMW). 373&ndash;380</li>\n</ol>\n</blockquote>\n\n<p>A Web user interface that uses these data to facilitate the COVID-19 literature exploration, can be found <a href=\"//bip.covid19.athenarc.gr\">here</a>. More details in our preprint <a href=\"//www.biorxiv.org/content/10.1101/2020.04.11.037093v2\">here</a>.</p>\n\n<p>Note that, in this version we changed the reporting period for tweet counts. In particular, for now on (for next versions), tweets taken from a recent week will be considered.</p>\n\n<p><em><strong>Terms of use:</strong></em> These data are provided &quot;as is&quot;, without any warranties of any kind. The data are provided under the Creative Commons归因4.0国际 license.</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "BIP4Covid19:冠状病毒相关出版物的影响指标和指标", 
    "notes": "We acknowledge support of this work by the project \"Moving from Big Data Management to Data Science\" (MIS 5002437/3) which is implemented under the Action \"Reinforcement of the Research and Innovation Infrastructure\", funded by the Operational Programme \"Competitiveness, Entrepreneurship and Innovation\" (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund).", 
    "relations": {
      "version": [
        {
          "count": 56, 
          "index": 31, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3723281"
          }, 
          "is_last": false, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "4903432"
          }
        }
      ]
    }, 
    "communities": [
      {
        "id": "covid-19"
      }, 
      {
        "id": "zenodo"
      }
    ], 
    "version": "26", 
    "references": [
      "COVID-19 Open Research Dataset (CORD-19). 2020. Version 2020-11-28. Retrieved from //pages.semanticscholar.org/coronavirus-research. Accessed 2020-11-28.", 
      "I. Kanellos, T. Vergoulis, D. Sacharidis, T. Dalamagas, Y. Vassiliou: Impact-Based Ranking of Scientific Publications: A Survey and Experimental Evaluation. TKDE 2019", 
      "Rumi Ghosh, Tsung-Ting Kuo, Chun-Nan Hsu, Shou-De Lin, and Kristina Lerman. 2011. Time-Aware Ranking in Dynamic Citation Networks. In Data Mining Workshops (ICDMW). 373\u2013380", 
      "R. Motwani L. Page, S. Brin and T. Winograd. 1999. The PageRank Citation Ranking: Bringing Order to the Web. Technical Report. Stanford InfoLab.", 
      "Chen Q, Allot A, & Lu Z. (2020) Keep up with the latest coronavirus research, Nature 579:193 (version 2020-11-28)"
    ], 
    "keywords": [
      "COVID-19", 
      "coronavirus", 
      "scientometrics", 
      "bibliometrics"
    ], 
    "publication_date": "2020-12-05", 
    "creators": [
      {
        "orcid": "0000-0003-0555-4128", 
        "affiliation": "雅典娜研究中心", 
        "name": "Thanasis Vergoulis"
      }, 
      {
        "orcid": "0000-0003-2146-3795", 
        "affiliation": "雅典娜研究中心", 
        "name": "Ilias Kanellos"
      }, 
      {
        "orcid": "0000-0003-1714-5225", 
        "affiliation": "雅典娜研究中心", 
        "name": "Serafeim Chatzopoulos."
      }, 
      {
        "orcid": "0000-0002-3154-6212", 
        "affiliation": "雅典娜研究中心", 
        "name": "Danae Pla Karidi"
      }, 
      {
        "orcid": "0000-0002-5002-7901", 
        "affiliation": "雅典娜研究中心", 
        "name": "Theodore Dalamagas"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "related_identifiers": [
      {
        "scheme": "url", 
        "identifier": "//pages.semanticscholar.org/coronavirus-research", 
        "relation": "cites", 
        "resource_type": "dataset"
      }, 
      {
        "scheme": "handle", 
        "identifier": "www.biorxiv.org/content/10.1101/2020.04.11.037093v2", 
        "relation": "isSupplementTo", 
        "resource_type": "publication-preprint"
      }, 
      {
        "scheme": "url", 
        "identifier": "//github.com/diwis/PaperRanking", 
        "relation": "cites", 
        "resource_type": "software"
      }, 
      {
        "scheme": "doi", 
        "identifier": "10.5281 / ZENODO.3723281", 
        "relation": "isVersionOf"
      }
    ]
  }
}
114,116
15,142
views
downloads
所有版本 这个版本
意见 114,1162,735
下载 15,142221
数据量 216.9 GB.3.3 GB
独特的观点 106,6322,629
独特的下载 10,897179

分享

引用